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ABSTRACT
Various unconstrained optimization algorithms were investigated for the purpose of obtaining an
improved understanding of optimization techniques.  FORTRAN code for the Method of Steepest
Descent and Newton’s Method was developed independently to obtain the minimum values of
two test problems, Rosenbrock’s function and the tip loaded cantilever beam maximum deflection
function.  In addition, the refined IMSL routines, DUMING and DUMIAH (Quasi-Newton
Methods) were used to evaluate the same functions for comparison purposes.  The results have
been tabulated and are presented as objective-function contour plots with superimposed
optimization routine trajectories and were compared in each case from the standpoints of
accuracy and efficiency.
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INTRODUCTION
The purpose of this project is to develop an improved understanding of various algorithms used
for optimization of unconstrained engineering systems.  Three primary algorithms that are
commonly employed include the Method of Steepest Descent, Newton’s Method, and the Quasi-
Newton Method.  FORTRAN code for the Method of Steepest Descent and Newton’s Method
was developed independently and used to compute the minimum of Rosenbrock’s function (a
common test problem for optimization algorithms) and the maximum deflection of a tip loaded
cantilever beam.  In addition, refined IMSL routines for optimization were used for comparison
purposes.  This project has been divided into seven tasks that include:

1. Derivation of displacement field for a tip loaded cantilever beam.
2. Independent development of FORTRAN code for the Method of Steepest Descent

and Newton’s Method.
3. Review of usage for IMSL library FORTRAN routines.
4. Solutions to minimum of Rosenbrock’s function and the maximum deflection of a tip

loaded cantilever beam using the Method of Steepest Descent, Newton’s Method, and
IMSL routines DUMING and DUMIAH.

5. Derivation of the number of function evaluations necessary to calculate one forward
difference gradient and one forward difference hessian.

6. Comparison of algorithms and determination of best algorithm for optimizing
unconstrained engineering systems.

7. Implementation of line search procedure in the Method of Steepest Descent and
Newton’s Method and comparison of accuracy and efficiency with and without line
search.

Rosenbrock’s function is a “narrow-valley” function given as

f(x1,x2) = 100(x2 – x1
2)2 + (1 - x1)

2.

The traditional starting point of x = (-1.2,1.0) was used during this project.  The minimum value
of the function is f*(x) = 0 and occurs at x* = (1.0,1.0).

The maximum deflection function for a tip loaded cantilever beam is given as

f(x1,x2) = 12x1
2 + 4x2

2 - 12x1x2 + 2x1.

In this case, the traditional starting point of x = (-1.0,-2.0) is also used during this project.  The
minimum value of the function is f*(x) = -1/3 and occurs at x* = (-1/3.-1/2).

Solution Techniques
Task 1:
See appendix A.

Task 2:
The Method of Steepest Descent is a first order method that makes use of the gradient of the
function and can be expressed, algorithmically, as

xk+1 = xk + αs,

where α is the step length and s is the search direction that is obtained as
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s = -∇∇f(x)/norm[∇∇f(x)].

As can be seen, this algorithm makes use of the gradient in attaining the search direction.
Similarly, Newton’s method, which is a second order method, may be expressed algorithmically
as

xk+1 = xk + αs.

In this case,

s = -H-1∇∇f(xk).

In contrast to steepest descent, Newton’s Method makes use of the hessian as well as the gradient
of the function.  The Method of Steepest Descent and Newton’s Method FORTRAN codes are
included in appendix C as stpdes.f and newmeth.f, respectively.  Both of these programs make use
of subroutines that are coded by the user for minimization of the desired function.  These
subroutines consist of fcn.f, grad.f, and hess.f.  The subroutine fcn(n,x,f) evaluates the objective
function, returning f,  given x(n), an n-dimensional vector, and n the dimension of x or number of
independent variables.  Similarly, the subroutine grad(n,x,fgrad) evaluates the gradient vector
∇f(x) of the objective function, returning fgrad(n), given x(n) and n.  Finally, the subroutine
hess(n,x,h,ldh) evaluates the hessian of the objective function, ∇2f(x), a nxn dimensional array,
returning h(n,n) and ldh the leading dimension (i.e. row dimension), given x(n), and n.  Each
subroutine was coded for Rosenbrock’s function and the cantilever beam deflection function for
solution using stpdes.f, newmeth.f and IMSL routines DUMING and DUMIAH.  However, the
Method of Steepest Descent does not make use of the hessian, hence it was precluded from use in
the program stpdes.f.

Task 3:
IMSL routine usage was obtained by logging onto eddie and accessing pubbs bulletin #2.  This
usage information was printed for future reference.

Task 4:
The test problems, Rosebrock’s function and the cantilever beam deflection function, were coded
as the previously discussed subroutines and run using the Method of Steepest Descent, Newton’s
Method, and the IMSL routines DUMING and DUMIAH.  The driver code; programs rfunc1.f,
cfunc1.f, rfunc2.f, and cfunc2.f for optimization routines DUMING and DUMIAH, respectively
are also included in appendix C.  The results have been included as output in appendix D.

Task 5:
See appendix B.

The second step consisted of a comparative evaluation of the various optimization routines.  For
this purpose a performance index was developed and consists of the total number of function
evaluations required per step divided by the total number of function evaluations required for
convergence.  This may be expressed mathematically as η =  f/F, where f is the total number of
function evaluations per step (i.e. one forward difference gradient and one forward difference
hessian) as derived above as n2/2+n+1, and F is the total number of function evaluations required
for convergence to some level of accuracy that is specified apriori (i.e. eps=1.0e-8 in FORTRAN
codes).  Thus, a performance index η=1.0 represents an optimally efficient case as convergence is
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obtained in a single step.  Alternatively, as η→0, the algorithm is decreasingly efficient since the
total number of function evaluations is large in comparison to that required in a single step.
However, it is important to note that this holds in the case of convergence.  If convergence is not
attained, then the performance index, in this form, provides no indication of the accuracy, another
important characteristics of a sound optimization routine.

The number of function, gradient, and hessian evaluations were tabulated for each code in
attaining the minimum along with x, the function values at convergence, the number of iterations,
the convergence criteria, and the performance index.

Finally, the trajectories generated by each algorithm as it approached the minimum are presented
along with the objective function contour plots for each case.  The bold face entries in the
tabulated results represent those cases for which trajectory plots were generated.  These results
are included in appendix E and discussed in the following results and discussion section.

Task 6:
Comparison of algorithms was achieved using the results of the task 5 and is included in the
following results and discussion section.

Task 7:
Includes the implementation of a line search procedure for the Method of Steepest Descent
algorithm (stpdesm.f) and Newton’s Method algorithm (newmthm.f) was unsuccessful.

RESULTS AND DISCUSSION
Tabulated Results
For this investigation, the convergence criteria was specified aproiri as eps=10e-8.  In addition,
1,000 iterations were also specified as a cut-off under conditions where convergence could not be
achieved.  However, this limit was pushed in the case of the Method of Steepest Descent in an
unsuccessful attempt to improve accuracy and attain convergence.  Table 1 represents the results
for the minimization of Rosenbrock’s function using the Method of Steepest Descent without a
line search procedure.  Various step-length,α, values were run to investigate the convergence
characteristics of this algorithm.  It is apparent that, in the case of Rosenbock’s function the
Method of Steepest Descent has difficulty converging within the specified cut-off criteria of 1000
iterations.  Only after reducing the step length to α=0.001 with 100,000 iterations was third order
accuracy achieved.  This represents a relatively large computation cost and poor performance
parameters, η, as compared with other methods investigated here.

Table 1. – Computed results for Rosenbrock’s function using Method of Steepest Descent
without line search algorithm.

αα f* X1 x2 #fcn #grad #it ηη
0.10 0.75522657 0.53557 0.21338 1 1,001 1,000 0.005
0.25 1.29090982 0.11440 0.08427 1 1,001 1,000 0.005
0.50 15.00144417 0.03590 0.37641 1 1,001 1,000 0.005
0.10 0.75522657 053560 0.21341 1 10,001 10,000 0.0005
0.05 0.26121312 0.78626 0.57178 1 1,001 1,000 0.005
0.01 0.02804301 0.86175 0.75206 1 1,001 1,000 0.005

0.001 2.57755850 -0.60354 0.37214 1 1,001 1,000 0.005
0.001 0.00012524 0.99998 0.99883 1 10,001 10,000 0.0005
0.001 0.00012510 1.00035 0.99958 1 100,001 100,000 0.00005
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Table 2 represents the tabulated results for the minimization of cantilever beam function
using the Method of Steepest Descent.  Again, some difficulty converging to the solution
is evident.  Only after reducing the step-length to α=0.01 was third order accuracy of the
minimum achieved in 1,000 iterations.  For no case was the performance parameter greater than
0.005.

Table 2. – Computed results for Cantilever Beam function using Method of Steepest Descent
without line search algorithm.

αα f* X1 X2 #fcn #grad #it ηη
0.10 -0.30285400 -0.29387 -0.52112 1 1,001 1,000 0.005
0.25 -0.09564938 -0.44355 -0.44102 1 1,001 1,000 0.005
0.50 0.77703785 -0.57154 -0.37251 1 1,001 1,000 0.005
0.10 -0.30285400 -0.29387 -0.52112 1 10,001 10,000 0.0005
0.05 -0.33105206 -0.32254 -0.50578 1 1,001 1,000 0.005
0.01 -0.33329073 -0.33186 -0.50079 1 1,001 1,000 0.005

0.001 -0.33310455 -0.32991 -0.50183 1 1,001 1,000 0.005

Newton’s Method represents much improved results as given in tables 3-4.  In all step-length
cases for both functions investigated, convergence to the solution was achieved.  Varying α
between 0.1 and 1.0 demonstrates the improved efficiency as the number of iterations is improved
from 277 to 7 for minimization of Rosenbrock’s function; and improvement from 190 to 1 for the
cantilever beam function, respectively.  This case for which α=1.0 represents a performance
parameter of η=0.417 for Rosenbrock’s function and η=1.250 for the cantilever beam function,
which is remarkable in comparison with the Method of Steepest Descent.  It should be noted that
the performance index for the cantilever beam function using Newton’s is greater than 1.0.  This
is due to the fact that finite difference techniques were not used in these algorithms because the
exact values for the gradient and hessian were explicitly known.  Thus, all of the performance
indices presented here are slightly higher than those that would be obtained had the gradient and
hessian of the functions not be explicit (i.e. These algorithms would have required more function
evaluations).

Table 3. – Computed results for Rosenbrock’s function using Newton’s Method without line
search algorithm.

αα f* x1 x2 #fcn #grad #hess #it ηη
0.10 .00000000 1.00000 1.00000 1 278 277 277 0.009
0.25 .00000000 1.00000 1.00000 1 115 114 114 0.022
0.50 .00000000 1.00000 1.00000 1 57 56 56 0.044
0.75 .00000000 1.00000 1.00000 1 36 35 35 0.069
1.00 .00000000 1.00000 1.00000 1 6 5 7 0.417

Table 4. – Computed results for Cantilever Beam function using Newton’s Method without line
search algorithm.

αα f* x1 x2 # fcn #grad #hess #it ηη
0.10 -.33333333 -.33333 -.50000 1 191 190 190 0.013
0.25 -.33333333 -.33333 -.50000 1 71 70 70 0.035
0.50 -.33333333 -.33333 -.50000 1 30 29 29 0.083
0.75 -.33333333 -.33333 -.50000 1 16 15 15 0.156
1.00 -.33333333 -.33333 -.50000 1 2 1 1 1.250
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The primary advantage of using the IMSL routines is in their level of refinement.  As can
be seen in table 5, convergence is attained in a relatively small number of iterations.  The
fact that these results represent improvement, even though the performance parameters
are not necessarily higher, is realized in consideration of the step-length refinement.
Obviously the IMSL routine make use of some sort of line search procedure to optimized
the step length at each iteration.  This precludes the need to investigate various values of
α in obtaining a more efficient convergence as was done with the results in tables 1-4.

Table 5. - IMSL Routines (DUMING and DUMIAH) used to computed minimum of
Rosenbrock’s function and beam deflection function.

DUMING
f* x1 x2 #fcn #grad #it ηη

Rosenbrock’s funct. .00000000 .99999997 .99999993 32 23 N/A 19 0.091
Cantilever Beam -.3333333 -.3333333 -.5000000 8 5 N/A 4 0.385

DUMIAH
f* x1 x2 #fcn #grad #hess #it ηη

Rosenbrock’s funct. .00000000 .99999991 .99999982 31 22 21 21 0.068
Cantilever Beam -.3333333 -.3333333 -.5000000 5 2 1 1 0.625

Trajectory Results
The trajectories for each algorithm provide a visual indication of the path to convergence.
These trajectories have been superimposed over the contour plots for Rosebrock’s
function and the cantilever beam function and are included as appendix E.  Figures 1 and
2 represent the contour plot of Rosenbrock’s function and the cantilever beam function,
respectively, in the independent variable space.  Figures 3-6 represent the superimposed
trajectories of the Method of Steepest Descent for α = 0.001, 0.01, 0.1, and 0.5,
respectively.  It can be seen that these trajectories follow a path along the valley and only
in the case of α = 0.001 is convergence nearly achieved.  However, this is at the expense
of a large number of iterations (i.e. 10,000).  It is also important to note that a small-scale
oscillation about the path occurs, a feature that cannot be seen because only every 100th

data point was plotted.  As α is increased, it is apparent that the termination point
becomes further away from the optimum solution.  Figures 7-9 represent the Method of
Steepest Descent applied to the cantilever beam function for α = 0.01, 0.1, and 0.5
respectively.  In this case the trajectories take a more direct approach to the optimum
solution.  However, again convergence is not attained in 1,000 iterations.  Figures 10-14
represent Newton’s Method applied to Rosenbrock’s function for the full range of step-
length values investigated (i.e. α = 0.1, 0.25, 0.5, 0.75, ad 1.0).  In each of these cases,
convergence is obtained as this algorithm takes a more direct approach (i.e. without the
small-scale oscillations) to the optimum solution.  Furthermore, it can be seen that for α =
1.0 the most efficient case exists.  Similarly, figures 15-19 show direct convergence to
the optimum solution for the cantilever beam function.  Again, α = 1.0 represent the most
efficient case as convergence is achieved in a single step.  It is important to note that this
will not always be true, because with larger values of α comes increase risk of over-
shooting the optimum solution, a potential problem that the line search procedure handles
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nicely.  Finally, figures 20-23 represent the trajectories obtained from the IMSL routines,
DUMING and DUMIAH.  Figure 20 (i.e. the DUMING algorithm trajectory) shows a
large first step in approaching the minimum of Rosenbrock’s function, followed by a
reversal in direction and ultimately convergence.  This algorithm, unlike all the other
algorithms does not follow the valley to the solution during the initial iteration.  Figure 21
shows relatively fast convergence in the case of the cantilever beam function using
DUMING as the solution was obtained in only two iterations.  Unlike figure 20, figure 22
illustrates the nature of the DUMIAH routine in attaining convergence.  Similar to
Newton’s method, this algorithm trajectory follows the valley during the path to
convergence.  However, it appears to be somewhat side-tracked at times, a likely feature
of the line search procedure that is being used.  Although it does not represent a direct
path, it is certainly more efficient than the haphazard selection of α that was done for
Newton’s Method during this investigation.  Finally, figure 23 shows, similar to
Newton’s Method with α = 1.0, direct convergence in a single step.  It is important to
note that a greater number of function evaluations were required in this case.  However,
in the absence of knowing α apriori, this algorithm is likely to be more efficient.
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CONCLUSIONS

• Newton’s Method represents an improved algorithm in comparison with the Method
of Steepest Descent.  For the two test problems investigated, convergence is
gauranteed with Newton’s method, regardless of the step-length, α.  However, the
IMSL routines, DUMING and DUMIAH are likely more efficient due to their level of
refinement in optimizing α at each step and the fact that they make use of Newton’s
method without the inherent deficiencies (i.e. Quasi-Newton Methods)

• An indicator of performance can be derived from the minimum number of function
evaluations required at each step as compared with the total number of function
evaluations required for convergence.  This was obtained as ηand was used to
compare each of the algorithms investigated from the standpoint of efficiency.
Although η is not a direct indicator of accuracy, it does provide some indication with
respect to how quickly an algorithm converges.  If the algorithm does not converge
then η provides no indication of relative accuracy and becomes an indicator only of
efficiency in achieved a pre-specified level of accuracy.

• The trajectories presented for each case provide insight into the algorithmic
characteristics.  For the case of the Method of Steepest Descent, it is apparent that the
algorithm is less efficient as small-scale oscillations exist, even thought the trajectory
tends to follow the Rosenbrock’s function valley.  In the case of Newton’s method, a
more direct approach to the solution exist which lends to it’s improved efficiency.

• The IMSL routines, DUMING and DUMIAH likely represent the best efficiency due
to their “Quasi-Newton” nature. In both cases of test problems, convergence to the
solution was achieved quickly without prior knowledge of the step-length, α, a
characteristics indicative of the level of refinement and a good optimization
algorithm.
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APPENDIX A – Task #1: Displacement Field Derivation

This task called for derivation of the displacement field (eq. 4.2.15, Haftka and Gurdal1) which is
given as

v(ξ) = [(1-3ξ2+2ξ3)  l(ξ-2ξ2+ξ3)  (3ξ2-2ξ3)  l(-ξ2+ξ3)] [v1  θ1  v2  θ2]
T, (1)

starting with the general solution for the displacement field given as

v(ξ) = a0 + a1ξ + a2ξ2 + a3ξ3, (2)

where a0, a1, a2, a3 are constant coefficients, and ξ = x/l is the position along the length of the
beam.  The approach to this derivation consists of first applying the boundary conditions to obtain
four equations in four unknowns (i.e. the coefficients).  The system of equations can then be
solved using Gauss elimination to obtain expressions for the coefficients in terms of v1, θ1, v2, and
θ2.  These expressions may then be substituted into the general solution (eq. 2) to obtain the
result, eq. 4.2.15.  The boundary conditions are

Fixed end (at ξ = 0 or x = 0):
1. v(0) = a0 = v1. (3)
2. dv/dξ(0) = a1 = θ1l. (4)

Free end (at ξ = 1 or x = l):
3. v(1) = a0 + a1 + a2 + a3 = v2. (5)
4. dv/dξ(0) = a1 + 2a2 + 3a3 = θ2l. (6)

These four boundary conditions produce the following system of equations that may be used to
solve for the coefficients:

a0 = v1,

a1 = θ1l,
a0 + a1 + a2 + a3 = v2,
a1 + 2a2 + 3a3 = θ2l. (7)

Applying Gauss elimination gives expressions for the constant coefficients in terms of v1, θ1, v2,
and θ2 as

a0 = v1,

a1 = θ1l,
a2 = -2θ1l - 3v1 + 3v2 - θ2l,
a3 = θ1l + 2v1 - 2v2 + θ2l. (8)

Finally, substitution into general solution (eq. 2) gives upon rearranging

v(ξ) = v1(1-3ξ2+2ξ3) + θ1l(ξ-2ξ2+ξ3) + v2(3ξ2-2ξ3) + θ2l(-ξ2+ξ3). (9)

Eq. 9 is exactly the result given as eq. 4.2.15 from which the tip loaded cantilever beam
deflection objective function is obtained.
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APPENDIX B – Task #5: Function Evaluations and Performance Index

The first step in this task was to derive the number of function evaluations necessary to calculate
one forward difference gradient and one forward difference hessian.  The function expansion
about a point, δxi, may be expressed as a Taylor series

f(x + δxi) = f(x) + ∇∇fT(x)δxi + H.O.T.’s

Neglecting higher order terms and rearranging gives

∇∇fT(x)δxi = [f(x + δxi) - f(x)]/δxi.

This expression represents one forward difference gradient.  Now, f(x) requires one function
evaluation and f(x + δxi) requires n function evaluations corresponding with i = 1,2,…,n.  Thus,
the total number of function evaluations required for the calculation of one forward difference
gradient is n+1.  Similarly, the hessian can be expressed using the previously obtained gradient as

H = ∇2fT(x) = ∂/∂xj{[f(x + δxi) - f(x)]/δxi}.

Differentiating and rearranging gives

∇2fT(x) = [f(x + δxi + δxj) – 2f(x + δxi) + f(x)]/ δxiδxj.

This expression represents one forward difference hessian for which f(x) requires one function
evaluation, f(x + δxi) requires n functions evaluations corresponding with i=1,2,…,n and f(x + δxi

+ δxj) requires n2/2 function evaluations corresponding with i=1,2,…,n and  j=1,2,…,n for i≠j.
Thus a total of n2/2+n+1 function evaluations are required to compute one forward difference
hessian.
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APPENDIX C – FORTRAN CODE

1.)  ROSENBROCK’S FUNCTION MINIMIZATION
a.)  Steepest Descent Method
        PROGRAM stpdesr
c      Computes the minimum value of a multi-variate function using Method of Steepest Descent.
        INTEGER n,count,fcount,gcount,hcount
        PARAMETER (n=2,alpha=0.1,eps=1.0e-8)
        DOUBLE PRECISION x(n),fgrad(n),fgrads,f,h(n,n),ldh
c
        x(1)=-1.2
        x(2)=1.0
        fcount=0
        gcount=0
        hcount=0
        count=0
10    gcount=gcount+1
        call gradr(n,x,fgrad)
        fgrads=sqrt(fgrad(1)**2+fgrad(2)**2)
        if (fgrads.gt.eps) then
          x(1)=x(1)-alpha*fgrad(1)/fgrads
          x(2)=x(2)-alpha*fgrad(2)/fgrads
c      write output x(1) & x(2) at each iteration for redirect
c      to generate trajectory plots.
          write(*,*) x(1),x(2)
          if (count.lt.1000) then
             count=count+1
             go to 10
           else
             go to 20
           endif
        else
           go to 20
        endif
20    fcount=fcount+1
        call fcnr(n,x,f)
        open(unit=45,file='stpdesr.out',status='unknown')
        write(45,*) ' Minimum value of function is '
        write(45,30) f
        write(45,*) 'count    fcount    gcount       x1       x2'
        write (45,40) count,fcount,gcount,x(1),x(2)
30    format(5x,f12.8)
40    format(1x,i5,5x,i5,5x,i5,2x,f7.5,2x,f7.5)
        END
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b.)  Newton’s Method
        PROGRAM newmethr
c      Computes the minimum value of a multi-variate function using Newton's Method.
        INTEGER n,i,count,fcount,gcount,hcount
        PARAMETER (n=2,alpha=0.1,eps=1.0e-8)
        DOUBLE PRECISION x(n),fgrad(n),fgrads,f,h(n,n),ldh,s(n),deth
c
        x(1)=-1.2
        x(2)=1.0
        fcount=0
        gcount=0
        hcount=0
        count=0
10    gcount=gcount+1
        call gradr(n,x,fgrad)
        fgrads=sqrt(fgrad(1)**2+fgrad(2)**2)
        if (fgrads.gt.eps) then
          hcount=hcount+1
          call hessr(n,x,h,ldh)
c      Cramer's Rule
          deth=h(1,1)*h(2,2)-h(1,2)*h(2,1)
          s(1)=(h(2,2)*fgrad(1)-h(1,2)*fgrad(2))/deth
          s(2)=(h(1,1)*fgrad(2)-h(2,1)*fgrad(1))/deth
          x(1)=x(1)-alpha*s(1)
          x(2)=x(2)-alpha*s(2)
c      write output x(1) & x(2) at each iteration for redirect
c      to generate trajectory plots.
          write(*,*) x(1),x(2)
          if (count.lt.1000) then
            count=count+1
            go to 10
          else
            go to 20
          endif
        else
          go to 20
        endif
20    fcount=fcount+1
        call fcnr(n,x,f)
        open(unit=45,file='newmthr.out',status='unknown')
        write(45,*) ' Minimum value of function is '
        write(45,30) f
        write(45,*) 'count    fcount    gcount       x1       x2'
        write (45,40) count,fcount,gcount,x(1),x(2)
30    format(5x,f12.8)
40    format(1x,i5,5x,i5,5x,i5,2x,f7.5,2x,f7.5)
        END
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c.)  Function subroutine
        SUBROUTINE fcnr(n,x,f)
c      Evaluates the function specified (Rosenbrock’s funct.)
        INTEGER n
        DOUBLE PRECISION x(n),f
c
        f=100.*(x(2)-x(1)**2)**2+(1.-x(1))**2
        return
        END

d.)  Gradient subroutine
        SUBROUTINE gradr(n,x,fgrad)
c      Evaluates the gradient of the function specified (Rosenbrock’s funct.)
        INTEGER n
        DOUBLE PRECISION x(n),fgrad(n)
c
        fgrad(1)=400.*x(1)**3-400.*x(1)*x(2)+2.*x(1)-2.
        fgrad(2)=-200.*x(1)**2+200.*x(2)
        return
        END

e.)  Hessian Subroutine
        SUBROUTINE hessr(n,x,h,ldh)
c      Evaluates the hessian of the function specified (Rosenbrock’s funct.)
        INTEGER n
        DOUBLE PRECISION x(n),h(n,n)
c
        h(1,1)=-400.*x(2)+1200.*x(1)**2+2.
        h(2,2)=200.
        h(1,2)=-400.*x(1)
        h(2,1)=-400.*x(1)
        return
        END
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2.)  CANTILEVER BEAM DEFLECTION
a.)  Steepest Descent Method
        PROGRAM stpdesc
c      Computes the minimum value of a multi-variate function using Method of Steepest Descent.
        INTEGER n,count,fcount,gcount,hcount
        PARAMETER (n=2,alpha=0.1,eps=1.0e-8)
        DOUBLE PRECISION x(n),fgrad(n),fgrads,f,h(n,n),ldh
c
        x(1)=-1.0
        x(2)=-1.2
        fcount=0
        gcount=0
        hcount=0
        count=0
10    gcount=gcount+1
        call gradc(n,x,fgrad)
        fgrads=sqrt(fgrad(1)**2+fgrad(2)**2)
        if (fgrads.gt.eps) then
          x(1)=x(1)-alpha*fgrad(1)/fgrads
          x(2)=x(2)-alpha*fgrad(2)/fgrads
c      write output x(1) & x(2) at each iteration for redirect
c      to generate trajectory plots.
          write(*,*) x(1),x(2)
          if (count.lt.1000) then
             count=count+1
             go to 10
           else
             go to 20
           endif
        else
           go to 20
        endif
20    fcount=fcount+1
        call fcnc(n,x,f)
        open(unit=45,file='stpdesc.out',status='unknown')
        write(45,*) 'Maximum deflection is '
        write(45,30) f
        write(45,*) 'count    fcount    gcount       x1       x2'
        write (45,40) count,fcount,gcount,x(1),x(2)
30    format(5x,f12.8)
40    format(1x,i5,5x,i5,5x,i5,2x,f7.5,2x,f7.5)
        END
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b.)  Newton’s Method
        PROGRAM newmethc
c      Computes the minimum value of a multi-variate function using Newton's Method.
        INTEGER n,i,count,fcount,gcount,hcount
        PARAMETER (n=2,alpha=0.1,eps=1.0e-8)
        DOUBLE PRECISION x(n),fgrad(n),fgrads,f,h(n,n),ldh,s(n),deth
c
        x(1)=-1.0
        x(2)=-2.0
        fcount=0
        gcount=0
        hcount=0
        count=0
10    gcount=gcount+1
        call gradc(n,x,fgrad)
        fgrads=sqrt(fgrad(1)**2+fgrad(2)**2)
        if (fgrads.gt.eps) then
          hcount=hcount+1
          call hessc(n,x,h,ldh)
c      Cramer's Rule
          deth=h(1,1)*h(2,2)-h(1,2)*h(2,1)
          s(1)=(h(2,2)*fgrad(1)-h(1,2)*fgrad(2))/deth
          s(2)=(h(1,1)*fgrad(2)-h(2,1)*fgrad(1))/deth
          x(1)=x(1)-alpha*s(1)
          x(2)=x(2)-alpha*s(2)
c      write output x(1) & x(2) at each iteration for redirect
c      to generate trajectory plots.
          write(*,*) x(1),x(2)
          if (count.lt.1000) then
            count=count+1
            go to 10
          else
            go to 20
          endif
        else
          go to 20
        endif
20    fcount=fcount+1
        call fcnc(n,x,f)
        open(unit=45,file='newmthc.out',status='unknown')
        write(45,*) 'Maximum deflection is'
        write(45,30) f
        write(45,*) 'count    fcount    gcount       x1       x2'
        write (45,40) count,fcount,gcount,x(1),x(2)
30    format(5x,f12.8)
40    format(1x,i5,5x,i5,5x,i5,2x,f7.5,2x,f7.5)
        END
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c.)  Function subroutine
        SUBROUTINE fcnc(n,x,f)
c      Evaluates the function specified (cantilever beam)
        INTEGER n
        DOUBLE PRECISION x(n),f
c
        f=12.*x(1)**2+4.*x(2)**2-12.*x(1)*x(2)+2.*x(1)
        return
        END

d.)  Gradient subroutine
        SUBROUTINE gradc(n,x,fgrad)
c      Evaluates the gradient of the function specified (cantilever beam)
        INTEGER n
        DOUBLE PRECISION x(n),fgrad(n)
c
        fgrad(1)=24.*x(1)-12.*x(2)+2.
        fgrad(2)=8.*x(2)-12.*x(1)
        return
        END

e.)  Hessian Subroutine
        SUBROUTINE hessc(n,x,h,ldh)
c      Evaluates the hessian of the function specified (cantilever beam)
        INTEGER n
        DOUBLE PRECISION x(n),h(n,n)
c
        h(1,1)=24.
        h(2,2)=8.
        h(1,2)=-12.
        h(2,1)=-12.
        return
        END
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IMSL ROUTINE DRIVER CODE
1.)  DUMING:
a.)  Rosenbrock’s Function
       PROGRAM rfunc1
c      Computes the minimum value of Rosenbrock's function using refined
c      IMSL routine DUMING.
        INTEGER n,iparam(7)
        PARAMETER (n=2)
        DOUBLE PRECISION x(n),f,grad(n),xguess(n),xscale(n),fscale,
     &  rparam(7)
        EXTERNAL fcnr,gradr,DUMING
c
        xguess(1)=-1.2
        xguess(2)=1.0
        xscale(1)=1.0
        xscale(2)=1.0
        fscale=1.0
        iparam(1)=0.0
        call DUMING(fcnr,gradr,n,xguess,xscale,fscale,iparam,rparam,x,f)
c      Print results
        open(unit=45,file='dumr1.out',status='unknown')
        write(45,*)'The solution is           x1             x2'
        write(45,10)x
        write(45,*)'The minimum value is'
        write(45,20)f
        write(45,*)'The number of iterations ='
        write(45,30)iparam(3)
        write(45,*)'The number of function evaluations ='
        write(45,30)iparam(4)
        write(45,*)'The number of gradient evaluations ='
        write(45,30)iparam(5)
10    format(20x,f12.8,5x,f12.8)
20    format(5x,f12.8)
30    format(5x,i12)
        END
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b.)  Cantilever Beam Deflection Function
       PROGRAM cfunc1
c      Computes the minimum value of beam deflection function using refined
c      IMSL routine DUMING.
        INTEGER n,iparam(7)
        PARAMETER (n=2)
        DOUBLE PRECISION x(n),f,grad(n),xguess(n),xscale(n),fscale,
     &  rparam(7)
        EXTERNAL fcnc,gradc,DUMING
c
        xguess(1)=-1.2
        xguess(2)=1.0
        xscale(1)=1.0
        xscale(2)=1.0
        fscale=1.0
        iparam(1)=0.0
        call DUMING(fcnc,gradc,n,xguess,xscale,fscale,iparam,rparam,x,f)
c      Print results
        open(unit=45,file='dumc1.out',status='unknown')
        write(45,*)'The solution is           x1             x2'
        write(45,10)x
        write(45,*)'The minimum value is'
        write(45,20)f
        write(45,*)'The number of iterations ='
        write(45,30)iparam(3)
        write(45,*)'The number of function evaluations ='
        write(45,30)iparam(4)
        write(45,*)'The number of gradient evaluations ='
        write(45,30)iparam(5)
10    format(20x,f12.8,5x,f12.8)
20    format(5x,f12.8)
30    format(5x,i12)
        END
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2.)  DUMIAH:
a.)  Rosenbrock’s Function
        PROGRAM rfunc2
c      Computes the minimum of Rosnbrock's function using refined
c      IMSL routine DUMIAH.
        INTEGER n,iparam(7)
        PARAMETER (n=2)
        DOUBLE PRECISION x(n),f,grad(n),h(n,n),ldh,xguess(n),xscale(n),
     &  fscale,rparam(7)
        EXTERNAL fcnr,gradr,hessr,DUMIAH
c
        xguess(1)=-1.0
        xguess(2)=-2.0
        xscale(1)=1.0
        xscale(2)=1.0
        fscale=1.0
        iparam(1)=0.0
        call DUMIAH(fcnr,gradr,hessr,n,xguess,xscale,fscale,iparam,rparam,
     &  x,f)
c      Print results
        open(unit=45,file='dumr2.out',status='unknown')
        write(45,*)'The solution is           x1             x2'
        write(45,10)x
        write(45,*)'The minimum value is'
        write(45,20)f
        write(45,*)'The number of iterations ='
        write(45,30)iparam(3)
        write(45,*)'The number of function evaluations ='
        write(45,30)iparam(4)
        write(45,*)'The number of gradient evaluations ='
        write(45,30)iparam(5)
        write(45,*)'The number of hessian evaluations ='
        write(45,30)iparam(7)
10    format(20x,f12.8,5x,f12.8)
20    format(5x,f12.8)
30    format(5x,i12)
        END
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b.)  Cantilever Beam Deflection Function
         PROGRAM cfunc2
c       Computes the maximum deflection of cantilever beam using refined
c       IMSL routine DUMIAH.
        INTEGER n,iparam(7)
        PARAMETER (n=2)
        DOUBLE PRECISION x(n),f,grad(n),h(n,n),ldh,xguess(n),xscale(n),
     &  fscale,rparam(7)
        EXTERNAL fcnc,gradc,hessc,DUMIAH
c
        xguess(1)=-1.0
        xguess(2)=-2.0
        xscale(1)=1.0
        xscale(2)=1.0
        fscale=1.0
        iparam(1)=0.0
        call DUMIAH(fcnc,gradc,hessc,n,xguess,xscale,fscale,iparam,rparam,
     &  x,f)
c      Print results
        open(unit=45,file='dumc2.out',status='unknown')
        write(45,*)'The solution is           x1             x2'
        write(45,10)x
        write(45,*)'The minimum value is'
        write(45,20)f
       write(45,*)'The number of iterations ='
       write(45,30)iparam(3)
       write(45,*)'The number of function evaluations ='
       write(45,30)iparam(4)
       write(45,*)'The number of gradient evaluations ='
       write(45,30)iparam(5)
       write(45,*)'The number of hessian evaluations ='
       write(45,30)iparam(7)
10   format(20x,f12.8,5x,f12.8)
20   format(5x,f12.8)
30   format(5x,i12)
       END
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MATLAB PLOT CODE:
1.)  Rosenbrock’s Function
%Contour plot of Rosenbrock's function.
x=(-2:.1:2);
y=(-2:.1:3);
for n=1:41
   for m=1:51
      F(n,m)=100.*(y(m)-x(n)^2)^2+(1-x(n))^2;
      X(n,m)=x(n);
   Y(n,m)=y(m);
   end
end
contour(X,Y,F,50);
title('ROSENBROCKS FUNCTION CONTOUR PLOT');
xlabel('x1');
ylabel('x2');
print -dps rosplt.ps;

Typical Trajectory Plot Files
a.)  fn = sdtrpltr.m
%Plot of Rosenbrock's function trajectory.
load sdtrajr.out
x=(-2:.1:2);
y=(-4:.1:3);
for n=1:41
   for m=1:71
      F(n,m)=100.*(y(m)-x(n)^2)^2+(1-x(n))^2;
      X(n,m)=x(n);
   Y(n,m)=y(m);
   end
end
traj1(1)=-1.2
traj2(1)=1.0
for n=200:100:10000
   i=n/100;
   traj1(i)=sdtrajr(n,1)
   traj2(i)=sdtrajr(n,2)
end
contour(X,Y,F,50);
title('STEEPEST DESCENT TRAJECTORY (alpha=0.001)');
xlabel('x1');
ylabel('x2');
hold on;
plot(traj1,traj2,'-',traj1,traj2,'*');
print -dps sdtrajr.ps

b.)  fn = nmtrpltr.m
%Plot of Rosenbrock's function trajectory.
load nmtrajr.out
x=(-2:.1:2);
y=(-4:.1:3);
for n=1:41
   for m=1:71
      F(n,m)=100.*(y(m)-x(n)^2)^2+(1-x(n))^2;
      X(n,m)=x(n);
   Y(n,m)=y(m);
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   end
end
traj1(1)=-1.2
traj2(1)=1.0
for n=2:277
   traj1(n)=nmtrajr(n,1)
   traj2(n)=nmtrajr(n,2)
end
contour(X,Y,F,50);
title('NEWTONS METHOD TRAJECTORY (alpha=0.1)');
xlabel('x1');
ylabel('x2');
hold on;
plot(traj1,traj2,'-',traj1,traj2,'*');
print -dps nmtrajr.ps
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2.)  Cantilever Beam Function
Fn=cantplot.m
%Contour plot of Cantilever Beam function.
x=(-2:.1:2);
y=(-3:.1:3);
for n=1:41
   for m=1:61
      F(n,m)=12.*x(n)^2+4.*y(m)^2-12.*x(n)*y(m)+2.*x(n);
      X(n,m)=x(n);
   Y(n,m)=y(m);
   end
end
contour(X,Y,F,50);
title('CANTILEVER BEAM FUNCTION CONTOUR PLOT');
xlabel('x1');
ylabel('x2');
print -dps cantplt.ps;
grid on

Typical Trajectory Plot Files
a.)  fn = sdtrpltc.m
%Plot of Cantilever Beam function trajectory.
load sdtrajc.out
x=(-2:.1:2);
y=(-4:.1:3);
for n=1:41
   for m=1:71
      F(n,m)=12.*x(n)^2+4.*y(m)^2-12.*x(n)*y(m)+2.*x(n);
      X(n,m)=x(n);
   Y(n,m)=y(m);
   end
end
traj1(1)=-1.0
traj2(1)=-2.0
for n=20:10:1000
   i=n/10;
   traj1(i)=sdtrajc(n,1)
   traj2(i)=sdtrajc(n,2)
end
contour(X,Y,F,50);
title('STEEPEST DESCENT TRAJECTORY (alpha=0.01)');
xlabel('x1');
ylabel('x2');
hold on;
plot(traj1,traj2,'-',traj1,traj2,'*');
print -dps sdtrajc.ps

b.)  fn = nmtrpltc.m
%Plot of Cantilever Beam function trajectory.
load nmtrajc.out
x=(-2:.1:2);
y=(-4:.1:3);
for n=1:41
   for m=1:71
      F(n,m)=12.*x(n)^2+4.*y(m)^2-12.*x(n)*y(m)+2.*x(n);
      X(n,m)=x(n);
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   Y(n,m)=y(m);
   end
end
for n=1:2
   traj1(n)=nmtrajc(n,1)
   traj2(n)=nmtrajc(n,2)
end
contour(X,Y,F,50);
title('NEWTONS METHOD TRAJECTORY (alpha=1.0)');
xlabel('x1');
ylabel('x2');
hold on;
plot(traj1,traj2,'-',traj1,traj2,'*');
print -dps nmtrajc.ps
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APPENDIX D – OUTPUT

METHOD OF STEEPEST DESCENT:
1.)  Rosenbrock’s  Function Minimization
αα =0.1
fn=stpdesr.out
Minimum value of function is
        .75522657
 count    fcount    gcount       x1         x2
  1000         1          1001   .53557   .21338

αα =0.25
fn=stpdesr2.out
Minimum value of function is
       1.29090982
 count    fcount    gcount       x1         x2
  1000         1          1001   .11440   .08427

αα =0.5
fn=stpdesr3.out
Minimum value of function is
      15.00144417
 count    fcount    gcount       x1         x2
  1000         1          1001   .03590   .37641

αα =0.1, count=10,000
fn=stpdesr4.out
Minimum value of function is
        .75522657
 count    fcount    gcount       x1         x2
 10000         1       10001   .53560   .21341

αα =0.05, count=1,000
fn=stpdesr5.out
Minimum value of function is
        .26121312
 count    fcount    gcount       x1         x2
  1000         1          1001   .78626   .57178

αα =0.01, count =1,000
fn=stpdesr6.out
Minimum value of function is
        .02804301
 count    fcount    gcount       x1       x2
  1000         1      1001   .86175   .75206

αα =0.001, count =1,000
fn=stpdesr7.out
Minimum value of function is
       2.57755850
 count    fcount    gcount       x1       x2
  1000         1      1001  -.60354   .37214



27

αα =0.001, count =10,000
fn=stpdesr7.out
Minimum value of function is
        .00012524
 count    fcount    gcount       x1          x2
 10000         1        10001   .99998   .99883

αα =0.001, count =100,000
fn=stpdesr7.out
Minimum value of function is
       .00012510
 count    fcount    gcount       x1           x2
 100001       1      100001  1.00035   .99958
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2.)  Cantilever Beam Deflection Function
αα =0.1
fn=stpdesc.out
Maximum deflection is
       -.30285400
 count    fcount    gcount        x1         x2
  1000         1          1001  -.29387  -.52112

αα =0.25
fn=stpdesc2.out
Maximum deflection is
       -.09564938
 count    fcount    gcount        x1         x2
  1000         1          1001  -.44355  -.44102

αα =0.5
fn=stpdesc3.out
Maximum deflection is
        .77703785
 count    fcount    gcount        x1         x2
  1000         1          1001  -.57154  -.37251

αα =0.1, count=10,000
fn=stpdesc4.out
Maximum deflection is
       -.30285400
 count    fcount    gcount        x1          x2
 10000         1        10001  -.29387  -.52112

αα =0.05, count=1,000
fn=stpdesc5.out
Maximum deflection is
       -.33105206
 count    fcount    gcount        x1          x2
  1000         1          1001  -.32254  -.50578

αα =0.01, count =1,000
fn=stpdesc6.out
Maximum deflection is
       -.33329073
 count    fcount    gcount        x1          x2
  1000         1          1001  -.33186  -.50079

αα =0.001, count =1,000
fn=stpdesc7.out
Maximum deflection is
       -.33310455
 count    fcount    gcount        x1          x2
  1000         1          1001  -.32991  -.50183
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NEWTON’S METHOD:
1.)  Rosenbrock’s Function Minimization
αα =0.1
fn=newmthr.out
Minimum value of function is
        .00000000
 count    fcount    gcount       x1          x2
   277         1            278   1.00000  1.00000

αα =0.25
fn=newmthr2.out
Minimum value of function is
        .00000000
 count    fcount    gcount       x1          x2
   114         1            115   1.00000  1.00000

αα =0.5
fn=newmthr3.out
Minimum value of function is
        .00000000
 count    fcount    gcount       x1         x2
    56         1               57  1.00000  1.00000

αα =0.75
fn=newmthr4.out
Minimum value of function is
        .00000000
 count    fcount    gcount       x1         x2
    35         1               36  1.00000  1.00000

αα =1.0
fn=newmthr5.out
Minimum value of function is
        .00000000
 count    fcount    gcount       x1         x2
     6          1                 7  1.00000  1.00000
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2.)  Cantilever Beam Deflection Function
αα =0.1
fn=newmthc.out
Maximum deflection is
       -.33333333
 count    fcount    gcount       x1          x2
   190         1             191  -.33333  -.50000

αα =0.25
fn=newmthc2.out
Maximum deflection is
       -.33333333
 count    fcount    gcount       x1         x2
    70          1              71  -.33333  -.50000

αα =0.5
fn=newmthc3.out
Maximum deflection is
       -.33333333
 count    fcount    gcount       x1         x2
    29          1              30  -.33333  -.50000

αα =0.75
fn=newmthc4.out
Maximum deflection is
       -.33333333
 count    fcount    gcount       x1         x2
    15          1              16  -.33333  -.50000

αα =1.0
fn=newmthc5.out
Maximum deflection is
       -.33333333
 count    fcount    gcount       x1         x2
     1           1                2  -.33333  -.50000
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IMSL Routine DUMING:
1.)  Rosenbrock’s Function
fn=dumr1.out
The solution is           x1                     x2
                            .99999997        .99999993
 The minimum value is
    .00000000
 The number of iterations =
                19
 The number of function evaluations =
                32
 The number of gradient evaluations =
                23

2.)  Cantilever Beam Deflection Function
fn=dumc1.out
The solution is           x1                      x2
                           -.33333333       -.50000000
 The minimum value is
    -.33333333
 The number of iterations =
                    4
 The number of function evaluations =
                    8
 The number of gradient evaluations =
                    5
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IMSL Routine DUMIAH:
1.)  Rosenbrock’s Function
fn=dumr2.out
The solution is           x1                    x2
                            .99999991        .99999982
The minimum value is
  .00000000
The number of iterations =
               21
The number of function evaluations =
               31
The number of gradient evaluations =
               22
The number of hessian evaluations =
               21

2.)  Cantilever Beam Deflection Function
fn=dumc2.out
The solution is           x1                      x2
                           -.33333333       -.50000000
The minimum value is
   -.33333333
The number of iterations =
                    1
The number of function evaluations =
                    5
The number of gradient evaluations =
                    2
The number of hessian evaluations =
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APPENDIX E – FIGURES
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Figure 1. – Rosenbrock’s function contour plot.

Figure 2. – Cantilever beam function contour plot.

Figure 3. – Trajectory of the Method of Steepest Descent used in obtaining the minimum of
Rosenbrock’s function, α = 0.001.

Figure 4. – Trajectory of the Method of Steepest Descent used in obtaining the minimum of
Rosenbrock’s function, α = 0.01.

Figure 5. – Trajectory of the Method of Steepest Descent used in obtaining the minimum of
Rosenbrock’s function, α = 0.1.

Figure 6. – Trajectory of the Method of Steepest Descent used in obtaining the minimum of
Rosenbrock’s function, α = 0.5.

Figure 7. – Trajectory of the Method of Steepest Descent used in obtaining the minimum of the
cantilever beam function, α = 0.01.

Figure 8. – Trajectory of the Method of Steepest Descent used in obtaining the minimum of the
cantilever beam function, α = 0.1.

Figure 9. – Trajectory of the Method of Steepest Descent used in obtaining the minimum of the
cantilever beam function, α = 0.5.
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Figure 10. – Trajectory of Newton’s Method used in obtaining the minimum of Rosenbrock’s
function, α = 0.1.

Figure 11. – Trajectory of Newton’s Method used in obtaining the minimum of Rosenbrock’s
function, α = 0.25.

Figure 12. – Trajectory of Newton’s Method used in obtaining the minimum of Rosenbrock’s
function, α = 0.5.

Figure 13. – Trajectory of Newton’s Method used in obtaining the minimum of Rosenbrock’s
function, α = 0.75.

Figure 14. – Trajectory of Newton’s Method used in obtaining the minimum of Rosenbrock’s
function, α = 1.0.

Figure 15. – Trajectory of Newton’s Method used in obtaining the minimum of the cantilever
beam function, α = 0.1.

Figure 16. – Trajectory of Newton’s Method used in obtaining the minimum of the cantilever
beam function, α = 0.25.

Figure 17. – Trajectory of Newton’s Method used in obtaining the minimum of the cantilever
beam function, α = 0.5.
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Figure 18. – Trajectory of Newton’s Method used in obtaining the minimum of the cantilever
beam function, α = 0.75.

Figure 19. – Trajectory of Newton’s Method used in obtaining the minimum of the cantilever
beam function, α = 1.0.

Figure 20. – Trajectory of IMSL routine DUMING used in obtaining the minimum of
Rosenbrock’s function.

Figure 21. – Trajectory of IMSL routine DUMING used in obtaining the minimum of the
cantilever beam function.

Figure 22. – Trajectory of IMSL routine DUMIAH used in obtaining the minimum of
Rosenbrock’s function.

Figure 23. – Trajectory of IMSL routine DUMIAH used in obtaining the minimum of the
cantilever beam function.


